影响磁性复合材料磁特性的因素


磁粉
磁粉性能的好坏是直接影响磁性复合物材料性能的关键因素之一。磁粉性能的优劣与材料、组成、颗粒大小、粒度分布及制造工艺有关。
材料种类与组成的影响
铁磁粉末都可以与塑料复合,目前通常使用钡、铭铁氧体为主。原因是钡、钮铁氧体具有磁特性稳定、矫顽力高、电阻率高、密度小、价廉等优点。它们的晶体结构为六角晶型,分子式为MO6Fe2O3 (M为Ba, Sr, Mn, Pb等)。除了铁氧体之外,还有使用衫钻稀土合金制造塑料磁体。稀土类塑料磁体比铁氧体塑料磁体的磁性能高得多。它是今后发展电子仪器、通讯设备理想的磁性元件。铁氧体磁粉价格便宜,易于加工,稳定性好,但磁性能较差。SmCo3类磁粉稳定性差,成型中易氧化,其复合永磁长期使用温度低。Sm2Co17类磁粉,其磁性能比SmCo3磁粉优异得多,热稳定性也有较大幅度的提高。NdFeB类磁粉的热稳定性差,易腐蚀生锈,加人Co, Ni等元素可使性能得到改善。
 

颗粒大小的影响

磁粉颗粒的大小是影响磁性复合材料性能的重要因素。据文献报道,铁氧体和Sm俩 类粉体的矫顽力是由磁体内部的晶粒成核机制所控制,而Sm2嘶7和熔一淬法生产的微晶NdFeB类磁粉的矫顽力是由晶粒内部的畴壁钉扎所决定,对于矫顽力受成核机制所控制的磁粉,当磁粉颗粒尺寸大小接近单畴尺寸时,其矫顽力明显提高,抗退磁能力明显增大,如一般铁的矫顽力约为80A/m,而粒径小于20m的铁,其矫顽力却增大了100倍但当尺寸再减小到约6mn时其矫顽力反而又下降到零,表现出超顺磁性。对于矫顽力受钉扎机制控制的磁粉,其矫顽力不受颗粒大小的影响,这类磁粉颗粒的大小主要由填充密度和制造工艺等因素决定。

粒径分布的影响
磁粉粒度分布以及粒子形状对于填充率、加工性能和取向度都有重要影响。磁粉颗粒大小分布范围适宜,将有利于提高材料的填充密度,有利于磁粉在树脂中分布均匀,从而提高磁性能。这主要由复合方法决定:传统的复合方法是在聚合物中直接加人磁粉,由于磁粉很细,很容易团聚成粒径较大的颗粒;在塑料熔融过程中,由于树脂粘度较大,不利磁粉的取向,因而造成磁性能下降。此外,适宜的颗粒大小分布有利于成型时混合物流动。
磁特性的影响
磁粉本身的磁特性直接影响磁体 (制品)的性能。与烧结磁体不同,塑料磁体成型之后不再进行烧结.因此用于制造塑料磁体的磁粉必须反应完全、结晶完整、并达到一定的密度、细度。

制备工艺的影响
传统的磁粉制备是用研磨法,在研磨过程中,易使晶粒产生变形,造成内应力,这对于最终磁体(制品)的性能不利,必须通过退火处理来消除。此外,为了增强磁粉与塑料的亲和力,须控制磁粉含水量及对表面进行活化处理。作者运用化学共沉淀法通过控制反应条件制得合适的粒径、粒径分布及晶型的磁性微粒,并在磁性微粒形成的过程中包覆上一层表面活性剂,这有以下优点:因为化学共沉淀法是使磁粉由小到大生长成纳米级微粒,避免了传统研磨法可能产生的晶粒变形,简化了生产工艺;(2)可以使磁性微粒与单体及其聚合物相容性改善;因降低了磁粉微粒的表面活性,减少了与外界氧化物接触的面积,所以大大提高了磁性微粒的稳定性。

聚合物粘结剂
聚合物在聚合物基磁性复合材料中主要起粘结剂的作用,它将磁粉及各种助剂粘结起来赋予必要的加工性和机械特性。尽管大多数聚合物都可用来制备聚合物基磁性复合材料,但是为了获得加工性能和机械性能优良的制品,有必要对聚合物进行选择和改性,所选用的聚合物应尽可能满足熔融粘度低、机械强度高、热稳定性好等要求。各种树脂对磁性能有一定的影响,例如,在使用烯烃与乙烯醇共聚物时,其磁性能比使用聚乙烯和聚丙烯差些。即使同一类型的聚酞胺树脂,由于种类不同,其磁性能也有差异。资料报道:当铁氧体粉末含量质量分数为88%时,尼龙一12的磁性能最高,其次是尼龙一11,再次为PA6,PA66最低。又如四川大学的崔香福等人曾用空气和乙醇等离子体来处理聚丙烯塑料磁体,研究表明等离子处理过的PP与磁粉相容性有了很大的提高,改善了PP与磁粉的混炼性、PP塑磁的流变性及磁粉在PP中分布的均匀性。国内已有学者在这方面作了一些系统的研究。近年来,由于出现了一种新型的磁性材料— 高分子有机磁性材料,人们尝试着用这种磁性聚合物取代传统的非磁性聚合物作为聚合物基复合磁性材料的粘结剂。四川大学的刘颖等人在这方面做了一些研究,结果表明:磁性高分子材料含量降低,磁性高分子粘结磁体的最大磁能积、剩磁、矫顽力均升高,内票矫力略为下降,但在含相同体积分数磁粉情况下,磁性高分子粘结磁休的磁性能比非磁性高分子粘结磁体的磁性能高,温度稳定性差不多。
加工助剂
在传统方法生产的聚合物磁性复合材料成型中,由于磁粉的填充量很高,磁粉与聚合物的摩擦阻力很大、流动性差,不利于磁粉颗粒沿易磁化轴方向取向。为了改善这种状况,人们常加人加工助剂来改善流动性,提高磁粉的取向度。常用的加工助剂有增塑剂、润滑剂、稳定剂及表面处理剂等。其中表面处理剂最为重要,这是因为磁粉属于亲水性物质而树脂属于亲油性物质,因此它们之间的亲和性很差。此外,磁粉表面的微孔中吸附的空气和水分也妨碍树脂和助剂对磁粉的浸润,使磁粉和树脂复合后难以分散均匀,因此影响复合物熔体的流动性和成型加工性。因此,须控制磁粉含水量以及对磁粉表面进行处理。通常加人兼有亲水基团和亲油基团的偶联剂 (如有机硅、有机钦)、硬脂酸、油酸等,使磁粉表面吸附一层偶联剂薄膜,通过偶联剂覆盖于磁粉粒子表面形成亲油层,从而改善磁粉与树脂间的亲和性,二者相容性得到提高,使磁粉与树脂相互问分散更均匀,同时流动性也得到改善。实验证明:经偶联剂处理过的磁粉与树脂相互分散均匀川,相容性得到改善,使其复合熔体的流动性提高,从而能够顺利地进行成型加工。

相关新闻


揭秘MIM转轴件的生产工艺与工艺流程

转轴件在各种机械设备中扮演着重要的角色,而采用金属注射成型(MIM)技术制造的转轴件具有精密度高、成本低等优点。今天我们就来揭秘MIM转轴件的生产工艺与工艺流程,让我们一起探索这个神秘又精密的制造过程。在MIM转轴件的生产过程中,首先需要准备金属粉末和粘结剂,通过混合和注射成型形成原始件。接着,通过脱脂和烧结等工艺对原始件进行处理,使其达到所需的密度和强度。最后,进行后续加工和表面处理,最终得到成品MIM转轴件。MIM转轴件的生产过程中,工艺流程非常复杂,需要精密的设备和经验丰富的操作人员来保证产品质量。值得一提的是,MIM技术不仅适用于转轴件,还可以应用于各种复杂形状的金属零部件制造。通过揭秘MIM转轴件的生产工艺与工艺流程,我们更加了解了这一先进制造技术的精髓所在,也让我们对未来的机械制造充满期待和探索的精神。


MIM转轴件的应用领域及市场前景解析

MIM转轴件,就像是工业界的一颗璀璨明珠,它的应用领域涵盖了诸多领域,市场前景也是一片光明。这篇文章将为你揭开MIM转轴件的神秘面纱,让你了解它在各个领域的应用,以及未来的市场前景。**段落1:引入MIM转轴件的定义和概述**想象一下,一种集金属制造和塑料成型于一体的神奇材料,它就是MIM转轴件。通过金属粉末与塑料粘结剂的混合,再经过注射成型和烧结工艺,最终形成具有金属质感和塑料灵活性的转轴件。这种材料不仅具有金属的强度和耐磨性,还保留了塑料的轻巧和成型性,因此在工业制造领域备受推崇。**段落2:MIM转轴件在汽车行业的应用**在汽车行业,MIM转轴件大显身手。其高强度和耐磨性使得它成为汽车发动机、传动系统和转向系统等关键部件的选择材料。无论是在高速公路上还是在崎岖山路上,MIM转轴件都能稳稳守护车辆的稳定性和安全性,为驾驶者带来更加畅快的驾驶体验。**段落3:MIM转轴件在医疗设备领域的


如何选择合适的MIM转轴件材料?

如何选择合适的MIM转轴件材料?你好,今天我们来谈一谈关于MIM转轴件的材料选择。MIM转轴件作为机械零部件的重要组成部分,选用合适的材料至关重要。那么,如何选择适合的MIM转轴件材料呢?让我们一起来探讨。首先,要考虑的是MIM转轴件的使用环境和要求。不同的工作环境对转轴件材料的性能有不同的要求,比如在高温、高压、腐蚀性强的环境下工作,就需要选择耐高温、耐腐蚀的材料。其次,要考虑转轴件的机械性能。比如强度、硬度、耐磨性等,这些性能将直接影响到转轴件的使用寿命和稳定性。因此,在选择材料时要综合考虑这些机械性能指标。另外,成本也是一个重要的考量因素。选择合适的材料不仅要考虑到性能,还要考虑到成本效益。有时候并不是选择最昂贵的材料就能达到更好的效果,而是要根据实际情况做出权衡。在选择MIM转轴件材料时,还需要考虑到加工性能和可塑性。一些材料可能在加工过程中会出现断裂或变形的情况,这对于生产效率和