铁粉基软磁复合材料介绍


1 材料种类     

海绵铁从1910年开始生产,但直到1946年瑞典赫格纳斯公司才建立起世界第一家铁粉厂,现在铁粉生产已成为一种工业。60年代建立起雾化制粉工艺,整个铁粉工业年产铁粉逾80万t。这种材料大部分用于粉末冶金工业,按严格技术要求生产终形制品。高纯度与高压缩性铁粉的开发,为粉末冶金制品开辟了软磁应用领域。     

采用粉末冶金技术,压制铁粉并在高温下烧结,可得到相当于纯铁铸件的软磁部件。不损害压缩性的合金化方法的开发,提供了大量的合金化材料。合金添加剂提高电阻率,导致较低的涡流损耗。合金化材料在高温下烧结也可得到高磁导率。可是,合金添加剂也降低饱和磁感,而且合金含量在商业使用上还有一个限度。一般认为,这些材料适合于直流电应用,或很低频率的应用。     

减少铁颗粒涡流损耗的另一种方法是在颗粒之间引入绝缘层。绝缘层可以是有机树脂材料或无机材料,因而这些材料是软磁复合材料。绝缘层可以有效地降低涡流损耗,但绝缘层的作用像气隙一样,因而也降低了磁导率。通常用降低绝缘层厚度、压制到高密度和进行热处理消除或减少应力来部分地恢复磁导率。性能的变化取决于所使用的频率。因而最近几年迅速发展了一系列材料与工艺。     

软磁复合材料的最新开发,旨在生产可在较低频率下使用的部件。像电机一类通常是在50-60Hz频率下工作,但微型化趋势可能将频率增加到100Hz或 300Hz。将低频应用的烧结软磁材料与50Hz应用的软磁复合材料对比一下是有趣的。这种对比是在50Hz与0 5T条件下进行的,因为在较高磁感下的涡流损耗比例相当大,对于烧结材料性能的测定是困难的 。     

高电阻率的烧结材料在50Hz下的总损耗接近于软磁复合材料的总损耗。而烧结材料的总损耗中涡流损耗占有很高比例,而软磁复合材料的总损耗几乎全是磁滞损耗。     

对比 软磁复合材料的直流磁滞曲线与50Hz时的磁滞曲线,这些曲线实际上是相同的,因而证实总损耗几乎全是磁滞损耗。一种高电阻率材料(含3%Si的烧结铁)在直流和在0 05Hz、0 5Hz和50Hz交流时的磁滞曲线的面积随频率的增加而增加,证实存在着涡流损耗。     

低频到中频应用的传统材料是叠层钢片。堆叠钢片或堆叠前将钢片表面绝缘,可降低堆叠方向上的涡流。平行于钢片方向上显示出金属合金的高磁导率和损耗值。在低到中频使用的粉末材料几乎都是雾化铁粉。烧结材料要经受高达1250℃的高温,这保证了扩散与良好的颗粒接触。软磁复合材料在不高于500℃的温度进行热处理,因而它本身限制了烧结材料那样的颗粒接触。   

表面绝缘的效果:纯铁粉与添加0 5%Kenolube的绝缘粉Somaloy500,均在800MPa压制(密度7 34g/cm3)并在空气中于500℃热处理30min。结果表明:在50Hz时的总损耗是相似的,但纯铁的总损耗由于较高比例的涡流损耗比例而从 60Hz开始迅速增大。表面绝缘层能耐500℃热处理,并保持低的涡流损耗 。

2 工艺参数对性能的影响     

现在可由市场上买到低、中频应用的基于软磁复合材料技术的一系列材料。对比了三种低、中频材料,它们都是基于雾化铁粉添加0 5%Kenolube,800MPa压制,500℃空气中热处理30min。一种材料是ABM100 32,粒度小于150μm(100目),具有无机表面绝缘层。另两种材料是Somaloy550,粒度小于400μm(40目)和Somaloy500, 粒度小于150μm(100目)。这两种材料具有相同的无机表面绝缘层,并说明了较大粒度对总损耗的影响。Somaloy550具有较高的总损耗,最大直流磁导率为550,而Somaloy500具有较低的总损耗,最大直流磁导率为500。0 65mm厚的1018叠层钢与冷轧硅钢用于对比。     

混粉,压制与热处理的粉末冶金工艺 ,将决定所能达到的力学与磁学性能。以Somaloy500为例,说明不同工艺的影响。在混粉阶段添加润滑剂有两种选择。Kenolube润滑剂用于传统压制,LB1是一种润滑粘结剂,用于传统压制和温压。   

为得到较高的强度,在混粉阶段也可加入有机粘结剂。可是,因为大多数粘结剂并非有效的润滑剂,因而工业生产上既需要粘结剂也需要润滑剂。最低的润滑剂添加量,如0 5%和最低的粘结剂添加量,如0 5%,可能导致总有机添加量为1%,在压制后使密度降低。这种材料通常用作1kHz到1MHz的高频铁芯。在低频应用的情形中,为获得高磁感,高密度是很重要的。像LB1一类润滑粘结剂,当在混粉阶段加入时,既起润滑作用又起粘结作用,在固化后可达到较高的横向断裂强度(100MPa)。因而总的有机添加量可限制到0 6%。     

不使用粘结剂也可达到高横向断裂强度(100MPa到200MPa)。这种高横向断裂强度是用蒸汽处理得到的,通常它是用于改善烧结材料耐腐蚀性能的一种技术。这样处理的材料,适合于低频应用,因为这种处理增大了涡流损耗 。     

工艺路线也影响磁性能。所选取的润滑剂或粘结剂需进行固化或热处理。500℃热处理温度将消除一定程度的应力。有机粘结剂必须在较低的温度下固化,起不到或很少起到应力消除作用,因而磁滞损耗较高,导致总损耗较高。     

如果材料用于高频范围,则也可使用LB1和低固化温度。 对比了添加0 6%LB1,分别在400,600和800MPa压制和在175℃固化60min的Somaloy500材料的磁导率。频率在大约≤100kHz下,磁导率大致保持不变,因而可以用作铁芯。        

3 应用技术要求     

传统上,电机在50Hz或60Hz下工作,但有向高频(低于400Hz)发展的趋势。这些频率远低于铁粉芯传统上使用的1kHz到1MHz的频率范围。具有高纯度,良好压缩性和最小气隙的广泛的软磁复合材料,适合于这些应用 。     

像热传导率一类性能对马达的应用是令人感兴趣的,因为马达的工作温度可能高达150℃。由于铜绕组绝缘的限制因素,通常温度不能更高。与叠片钢不同,软磁复合材料的热传导性是三维的,而叠片钢在叠片方向上的热传导率很低,当材料处于热循环周期时,有机粘结剂的存在可导致热传导率的不可逆变化。     

对比了添加0 5%Kenolube和在500℃热处理的Somaloy500与添加0 6%LB1和进行传统压制以及在275℃固化的Somaloy500的热传导率。 添加0 5%Kenolube的Somaloy的热传导率很稳定,而添加0 6%LB1的Somaloy500的热传导率随热循环而变化。     

某些应用如汽车上的应用,可能要求在由制冷到高温的一个很大的温度范围内工作。由于马达的精度要求,在设计阶段需要像线性热膨胀一类的资料。    

 疲劳强度是与软磁复合材料工业应用相关的另一个问题。     添加0 5%Kenolube、800MPa压制、空气中500℃热处理30minSomaloy500的疲劳强度。电机约在≤150℃的温度下运行,若高于此温度,对绕组等进行绝缘较为困难。这种材料具有相对低的横向断裂强度,但疲劳强度比预料的要高。

4 应用     

某些软磁烧结材料可在直流与很低频率交流的应用, 如ABS制动器的轮速传感环,这种应用可选用铁、铁/磷或铁素体不锈钢材料。需要有一定的耐蚀性,因此在使用铁或铁/磷的情况中,部件必须有保护涂层。 软磁复合材料绝缘颗粒用于制作电机,大多需要3维马达设计。一种横向磁通电机便是一例。马达的重新设计,特别是永磁电机的重新设计,可以利用3维传热的优点。如单齿伺服马达设计便是一例。缩小齿面积导致较短端绕组,紧凑的马达,减少铜线绕组体积并提高了热性能。

 

相关新闻


揭秘MIM转轴件的生产工艺与工艺流程

转轴件在各种机械设备中扮演着重要的角色,而采用金属注射成型(MIM)技术制造的转轴件具有精密度高、成本低等优点。今天我们就来揭秘MIM转轴件的生产工艺与工艺流程,让我们一起探索这个神秘又精密的制造过程。在MIM转轴件的生产过程中,首先需要准备金属粉末和粘结剂,通过混合和注射成型形成原始件。接着,通过脱脂和烧结等工艺对原始件进行处理,使其达到所需的密度和强度。最后,进行后续加工和表面处理,最终得到成品MIM转轴件。MIM转轴件的生产过程中,工艺流程非常复杂,需要精密的设备和经验丰富的操作人员来保证产品质量。值得一提的是,MIM技术不仅适用于转轴件,还可以应用于各种复杂形状的金属零部件制造。通过揭秘MIM转轴件的生产工艺与工艺流程,我们更加了解了这一先进制造技术的精髓所在,也让我们对未来的机械制造充满期待和探索的精神。


MIM转轴件的应用领域及市场前景解析

MIM转轴件,就像是工业界的一颗璀璨明珠,它的应用领域涵盖了诸多领域,市场前景也是一片光明。这篇文章将为你揭开MIM转轴件的神秘面纱,让你了解它在各个领域的应用,以及未来的市场前景。**段落1:引入MIM转轴件的定义和概述**想象一下,一种集金属制造和塑料成型于一体的神奇材料,它就是MIM转轴件。通过金属粉末与塑料粘结剂的混合,再经过注射成型和烧结工艺,最终形成具有金属质感和塑料灵活性的转轴件。这种材料不仅具有金属的强度和耐磨性,还保留了塑料的轻巧和成型性,因此在工业制造领域备受推崇。**段落2:MIM转轴件在汽车行业的应用**在汽车行业,MIM转轴件大显身手。其高强度和耐磨性使得它成为汽车发动机、传动系统和转向系统等关键部件的选择材料。无论是在高速公路上还是在崎岖山路上,MIM转轴件都能稳稳守护车辆的稳定性和安全性,为驾驶者带来更加畅快的驾驶体验。**段落3:MIM转轴件在医疗设备领域的


如何选择合适的MIM转轴件材料?

如何选择合适的MIM转轴件材料?你好,今天我们来谈一谈关于MIM转轴件的材料选择。MIM转轴件作为机械零部件的重要组成部分,选用合适的材料至关重要。那么,如何选择适合的MIM转轴件材料呢?让我们一起来探讨。首先,要考虑的是MIM转轴件的使用环境和要求。不同的工作环境对转轴件材料的性能有不同的要求,比如在高温、高压、腐蚀性强的环境下工作,就需要选择耐高温、耐腐蚀的材料。其次,要考虑转轴件的机械性能。比如强度、硬度、耐磨性等,这些性能将直接影响到转轴件的使用寿命和稳定性。因此,在选择材料时要综合考虑这些机械性能指标。另外,成本也是一个重要的考量因素。选择合适的材料不仅要考虑到性能,还要考虑到成本效益。有时候并不是选择最昂贵的材料就能达到更好的效果,而是要根据实际情况做出权衡。在选择MIM转轴件材料时,还需要考虑到加工性能和可塑性。一些材料可能在加工过程中会出现断裂或变形的情况,这对于生产效率和